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1. Training and Validation Data Set
In this section, we describe the recorded data set and how it was generated.

1.1. Data Set Description

Our data set consists of 21 different scenarios including 2-8 repetitions each. In total the data set amounts to 100 sequences
including over 32 million radar detection points. For our experiments we focus on two kinds of road users: pedestrians and
cyclists. This choice is reasoned by the high effort for data recording and labeling. Also, the detection of bigger, faster, and
more electrically conductive objects such as cars is in general much easier with radar systems. Therefore, we postulate that
our results can be generalized and should even improve for such objects. For both kinds of recorded road users we measured
and labeled roughly the same amount of sequences. We are mainly interested in the data from the two radar sensors installed
in the front bumper of the car. Furthermore, we also record lidar data for reflector geometry estimation, camera images for
scene documentation, as well as global navigation satellite system (GNSS) and inertial measurement unit (IMU) data for
annotation purposes. The number of different scenarios was 21 for cyclists and 20 for pedestrians due to erroneous data
in one scenario for all pedestrian repetitions. All measurements were recorded over five different days with five different
people as rider and pedestrian, respectively. In each scenario we had the observed road user start at the ego-vehicle and drive
alongside the reflector until out of range, cf. Fig. 1. Then, the cyclist or pedestrian turned and approached the test vehicle
again on a similar trajectory. This allows us to effectively double our training data per scenario and, also, eases the quality
checking procedure as the road user always start in the field of view of the documentation camera.

A complete data set overview is given in Tab. 1, where each scene is shortly described and the amount of repetitions for
both object classes is indicated. Furthermore, in Fig. 3 some example pictures of used reflectors and road users are depicted.

In order to provide a better impression about the distances between the test vehicle, reflectors, and VRUs in the different
scenarios, we plot their distribution in Fig. 4. We use the distance of labeled NLOS detection points for the estimation. While
this approach yields an comprehensible way for determining the distances, it is affected by the irregular distribution of radar
detections which is generally higher for objects in close distance. Thus, the shown graphs indicate rather a lower bound
than absolute values of the actual distances. Moreover, a deeper insight in the data distribution is given in Fig. 5, where we
compare the distributions of direct-sight and NLOS detection points on the VRUs in our data set averaged for every individual
scenario. Despite the high number of NLOS detection points for the observed road users, the reduction compared to the direct
sight object are obvious, ranging from a factor of roughly 2× up to 50× less detections. In comparison, the average total
number of detections per measurement scene (3.2 · 105) is three orders of magnitude higher than the combined number of
direct- and non-direct sight detections, indicating the immense amount of clutter, the tracking algorithm has to cope with.

*Equal contribution.
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1.2. Automated Labeling via Ground Truth System

Label acquisition is always a tedious and expensive task, in particular for abstract data representations. A human labeler is
simply not as accustomed to radar measurements as to image data, for example. This problem is further increased when the
objects of interest are non-line-of-sight objects. Fig. 6 gives an example view of one of the scenes recorded for this article.
The radar data is displayed as bird’s eye view (BEV) image before any custom filtering is applied. The difficulty of assigning
the correct points to the VRU in all the clutter is easily recognizable from this example. It can further be seen from the
corresponding camera image, that it is also very hard to utilize the optical labeling aid in the NLOS case, since the objects
are often not present in the image data.

When allowing to limit parts of the data generation process to instructed scenarios the labeling process can be facilitated
with the use of reference sensors. To this end, we equip vulnerable road users (VRU) with hand-held global navigation
satellite system (GNSS) modules that are referenced to another GNSS module mounted on our vehicle (cf. Fig. 7). The
positioning information can then be used to automatically assign radar data points falling within close proximity to the
VRU’s location. It can both be applied to direct radar measurements, but also non-line of sight measurement reconstructions.
The reconstruction of non-line of sight measurements is explained in detail in Sec. 4. The final labels are subject to a
manual quality assessment process where falsely assigned labels can be corrected in case of non-precise relay wall or GNSS
information. The latter can often occur in scenarios with multiple high buildings around the measurement track. Due to the
special task for this article to use buildings as reflectors, this step becomes more important than otherwise. Nevertheless,
the utilization of the reference system allows us to obtain much more labeled data as would otherwise be possible with pure
manual labeling. The system’s setup and configuration are described in the remainder of this subsection. A similar system
was described in [13]. The authors also empirically proved that the influence of the reference system itself on the radar
measurements is negligible. In contrast to [13] we do not purely rely on GNSS data, but instead use the IMU for a complete
pose estimation of the hidden vulnerable road users as described in [14].

Since we have both, GNSS and IMU available for our hand-held reference system, we opt for the method in [14]. Ac-
cordingly, the proposed reference system consists of the following components: VRU and vehicle are equipped with a device
combining GNSS receiver and an IMU for orientation estimation each. VRUs comprise pedestrians and cyclists for this
article. The communication between car and the VRU’s receiver is handled via Wi-Fi. The GNSS receivers use GPS and
GLONASS satellites and real-time kinematic (RTK) positioning to reach centimeter-level accuracy. RTK is a more accurate
version of GNSS processing which uses an additional base station with known location in close distance to the desired po-
sition of the so-called rover. It is based on the assumption that most errors measured by the rover are essentially the same
at the base station and can, therefore, be eliminated by using a correction signal that is sent from base station to rover. The
VRU system comprises a GeneSys ADMA-Slim reference system installed in a backpack. Its IMU is based on micro-electro-
mechanical systems (MEMS) gyroscopes and accelerometers, has an angular resolution of 0.005◦, and a velocity accuracy of
0.01 m s−1 RMS. The GNSS receiver has a horizontal position accuracy of up to 0.8 cm. All system components except the
antennas are installed in a backpack including a power supply enabling ≈10 h of operation. The GNSS antenna is mounted
on a hat to ensure best possible satellite reception, the Wi-Fi antenna is attached to the backpack. Especially for the ego-
vehicle, a complete pose estimation (position + orientation) is necessary for the correct annotation of global GNSS positions
and radar measurements in sensor coordinates. For other applications such as tracking, the orientation of the VRU is also an
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Figure 1: Scenario description: For all scenes, the road user moves alongside a reflective object (1), turns (2), and comes back on a similar
path (3), effectively doubling the amount of training data.



Sc. # Reflector Description Cyclist Pedestrian
Repetitions Repetitions

1 Single parked car 2 4
2 Three cars parked in a row 3 4
3 Three cars parked in a row at a different location 2 4
4 Parked transporter van with trailer 4 2
5 Industry building with metal doors next to a garage 4 4
6 Corner of industry building without doors 2 1
7 Same industry building as above from a different position 2 2
8 Power distribution cabinet 2 2
9 Power distribution cabinet from a different position 2 0

10 Warehouse wall 2 2
11 Mobile standby office 2 1
12 Industry building - exit way 2 2
13 Multiple attached garages 2 2
14 Guard rail at intersection 2 3
15 Residential building 3 3
16 Plastered garden wall 2 2
17 Different residential building 2 2
18 Different three cars parked in a row 2 3
19 Different three cars parked in a row at a different location 3 2
20 Concrete curbstone at intersection 2 2
21 Small marble wall 3 3

Total 50 50

Table 1: Data set overview: Short descriptions of all recorded scenes including
the number of repetitions for each road user.
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Figure 2: Data set sequence
repetitions per scenario.

essential component. Furthermore, both vehicle and VRU can benefit from a position update via IMU if the GNSS signal
is erroneous or simply lost for a short period. As vehicle reference system, we use a GeneSys ADMA G-Pro similar to the
one in the backpack. Exact specifications for the GeneSys ADMA G-Pro can be found in the vehicle setup description in the
Supplement Sec. 3.1.

Once all data from GNSS, IMU and radar is captured, VRU tracks have to be assigned to corresponding radar reflections.
At first, all data needs to be transformed to a common coordinate system, e.g., car coordinates. Then, GNSS, IMU, and
combined information is smoothed with a moving average filter of length 9 to remove jitter in positions and movements. The
length corresponds to roughly 0.5 s for GNSS and 0.1 s for IMU data. Both durations are a trade-off between good smoothing
characteristics and the expected interval of continuous VRU behavior. For each timestamp of each radar measurement the
position is estimated by cubic spline interpolation. In the next step, an area around the position has to be defined. If
ordinary car tracks were referenced with this method a rigid selection area could be easily defined as car orientation and outer
dimensions can usually be estimated very precisely. For VRUs though, the selection area is more volatile. Swinging body
parts or turning handlebars of cyclists, for example, complicate defining a fixed enclosing structure. Hence, two different
versions of non-rigid surrounding shapes are proposed for the VRUs under consideration as depicted in Fig. 8 for pedestrians
and Fig. 9 cyclists, respectively. Both shapes can be regarded as an approximation of the VRU’s object signature, i.e., an
accumulation of a multitude of measurements over time in a coordinate system with center and pose fixed to the VRU. The
two object signatures depicted in Fig. 10 and Fig. 11 were obtained by measuring several repetitions of an eight-shaped
trajectory to include all aspect angles. For both VRUs, those measurements were recorded using the GNSS+IMU reference
system in a very clean environment. This way, all detections occurring in a generous area around the estimated VRU location
can be freely added to its object signature without prior knowledge about its extends.

For a pedestrian, a bivariate Gaussian distribution is assumed according to Fig. 10. Thus an ellipse is used with its major
axis oriented in movement direction (yaw angle) φ. Major and minor axis of the ellipse, lλ,1 and lλ,2, are calculated from
fixed minimum pedestrian dimensions (empirically determined: 1.5 m × 1.2 m) plus a variable extra length for swinging



Sc.1: Single Car Sc.4: Transporter Van Sc.2: Three Cars Sc.18: Three Cars Sc.19: Three Cars

Sc.11: Mobile Office Sc.5: Industry Building Sc.8: Power Cabinet Sc.13: Row of Garages Sc.14: Guard Rail

Sc.6: House Corner Sc.16: Garden Wall Sc.15: House Facade Sc.17: House Facade Sc.12: Building Exit

Sc.10: Warehouse Wall Sc.3: Three Cars Sc.7: House Corner Sc.20: Curbstone Sc.21: Marble Wall

Figure 3: Example pictures from scenes in the data set. All images include either the observed pedestrian or cyclist. The scene ids
corresponding to Tab. 1 are indicated in the captions. Please note, this figure allows for extensive zooming.
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Figure 4: Histograms for distribution of distances between ego-vehicle and relay wall, and VRU and vehicle, respectively.

body parts defined by its velocity v and yaw rate 9φ:

lλ,1 =

{
1.5 m + min(‖v‖ · 1 s, 1 m), if ‖v‖ ≥ 0.05 m s−1.

1.5 m, otherwise.
(1)

lλ,2 =

{
1.2 m + min(| 9φ| · 5 m s rad−1, 1 m), if ‖v‖ ≥ 0.05 m s−1.

1.5 m, otherwise.
(2)

Where 9φ can be directly adopted from the IMU data.
The cyclist’s object signature in Fig. 11 can be approximated with a rectangle. We use a rectangle with fixed length w1 of



2.5 m oriented in driving direction φ and width w2 of 1.2 m plus a variable amount based on its yaw rate as labeling area:

w1 = 2.5 m (3)

w2 = 1.2 m + min(| 9φ| · 5 m s rad−1, 1 m) (4)

As bikes usually cannot turn without driving, the derivation of φ assumes constant continuation of the cyclist’s orientation
for ‖v‖ < 0.05 m s−1 overruling the estimated yaw angle of the reference system.

At each time step, all radar detections that lie inside the defined regions are being assigned to the corresponding object
instance label. Finally, all sequences are manually checked to ensure correct label assignments and make corrections where
necessary.

2. Radar Image Formation
This section gives insight in the generation of the radar detection points which are utilized for object tracking. Therefore,

we first derive how automotive radars resolve objects space, time, amplitude, and radial velocity according to [8]. Then, we
show how the derivation is processed simultaneously on the whole measurement scene, and how object targets are detected
in general. Lastly, we give an overview of how we combine the introduced techniques for our specific use case.

2.1. Radar Principle

Radar sensors send out electromagnetic (EM) waves which are reflected by close-by objects. Then again, the reflections
are measured by the radar sensors. For objects to be ”reflective”, their physical micro structure size must be at least in
the same order of magnitude as the EM wavelength λ. Furthermore, the reflector’s conductivity is an important factor and
increases its effectiveness. Modern automotive radar sensors typically operate in the frequency bands 76 GHz to 77 GHz and
77 GHz to 81 GHz. The resulting wavelength can be directly calculated given the velocity of propagation which is the speed
of light c:

λ = c/f. (5)

The resulting wavelengths are between 3.70 mm and 3.95 mm, thus, can well detect small structures. Nevertheless, tiny
structures such as rain drops or fog particles still allow smooth propagation.

For this article, we utilize a frequency modulated continuous wave (FMCW) radar with chirp sequence modulation and a
multiple input multiple output (MIMO) configuration. It can resolve targets in range r (i.e. distance), angle φ (i.e. azimuthal
angle), and Doppler vr (i.e. relative radial velocity). Though theoretically possible, we do not consider elevation angles here,
since our sensor does not resolve targets by vertical differences. The measurement time is fixed for every individual sensor
cycle which consists of N consecutive frequency chirps. Each frequency chirp consists of a continuous wave signal over a
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Figure 5: Data set statistics: distributions of labeled detections in the direct-sight and NLOS case, listed separately for both VRUs and
averaged individually for each scenario.
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Labeled BEV radar image. Radar detections have been
grouped and assigned with correct labels. The two objects of
interest, the occluder and the relay wall, are highlighted in the
image for better visibility.

Camera reference image of labeling scene at same time as
radar images. VRU not visible in camera yet.

Camera reference image of labeling scene 400 ms later. VRU
comes into sight of the camera.

Figure 6: Example pictures from labeling tool. The upper two images show the radar data in unlabeled and labeled view. The bottom row
represents the images of documentation camera on the vehicle at the time of the radar data (left) and 400 ms later, i.e., when the object of
interest comes into view.

frequency band B starting from the carrier frequency fc, that is

g(t) = cos

(
2πfct+ π

B

Tm
t2c

)
, (6)

t = nTtot + tc with tc ∈ (0, Tm), n ∈ (0, N − 1), (7)

with Tm and Ttot being the sweep’s rise time and its total time. The instantaneous frequency of the signal in Eq. (6) is
1/2π d/dtc 2πfct + π B/Tmt2c = fc + B/Tmtc, that is a linear sweep varying from fc to fc + B, which is plotted in Fig. 12.
Beside the rise time and the total chirp, a pause time T0 makes up for the difference according to Fig. 12. The emitted signal
g propagates through the visible and occluded parts of the scene, that is this signal is convolved with the scene’s impulse
response. For a given emitter position l and receiver position c, the received signal becomes

s(t, c, l,w) =

∫
Λ

α(x) ρ (x−w,w − x)
1

(rlw+rxw)2

1

(rxw+rwc)2
g

(
t− rlw+2 rxw+rwc

c

)
dσ(x), (8)
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Figure 7: Automated label generation with a GNSS reference system: global positions of ego-vehicle and GNSS backpack are used to
automatically assign labels to radar data in close proximity to the the backpack’s location.
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Figure 9: Cyclist: Rectangular selection area.

with x the position on the hidden and visible object surface Λ, the surface measure σ on the two-dimensional surface Λ,
α as the abledo, and ρ denoting the bi-directional reflectance distribution function (BRDF), which depends on the incident
direction ωi = l− x and outgoing direction ωo = x−w. The distance function r·· describes here the distance between the
subscript position and its squared inverse in Eq. (8) models the intensity falloff due to backscatter.

The scattering behavior ρ depends on the surface properties. Surfaces that are flat, relative to the wavelength of ≈0.5 cm
for typical 76 GHz-81 GHz automotive radars, will result in a specular response. We measure the surface roughness of the
directly visible scene components using the first response of a scanning lidar system. As a result, the transport in Eq. (8)
treats the relay wall as a mirror, see Fig. 13. We model the reflectance of the hidden and directly visible targets following [1],
with a diffuse and retroreflective term as

ρ (ωi, ωo) = αd ρd (ωi, ωo) + αs ρs (ωi, ωo)︸ ︷︷ ︸
≈0

, (9)

with ωi and ωo being the incident and output direction. In contrast to recent work [1, 5], we cannot rely on the specular
component ρs, as for large standoff distances, the relay walls are too small to capture the specular reflection. Indeed,
completely specular facet surfaces are used to hide targets as “stealth” technology [7]. As retroreflective radar surfaces
are extremely rare in nature [9], the diffuse part ρd dominates ρ. Note that α(x)ρ (x−w,w − x) in Eq. (8) is known as the
intrinsic radar albedo, describing backscatter properties, i.e. the radar cross section (RCS) [11].
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Figure 10: Pedestrian radar object signature calculated relative to
GNSS+IMU position measurements.
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Figure 11: Cyclist radar object signature calculated relative to
GNSS+IMU position measurements.
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Assuming an emitter and detector position c = l = w and a static single target ξ at distance r = ‖c− x‖ with roundtime
reflection

τξ =
2(r + vrt)

c
=

2(r + vr(nTm + tc))

c
, (10)

Eq. (8) becomes a single sinusoid sξ:

sξ(t) = αξg(t− τξ), (11)

pξ(t) = sξ(t) · g(t)

=
αξ
2

cos

(
4πfct+ 2π

B

Tm
t2c − 2πfcτξ − 2π

B

Tm
τξtc + π

B

Tm
τ2
ξ

)
+
αξ
2

cos

(
2π

B

Tm
τξtc + 2πfcτξ − π

B

Tm
τξ

2

)
,

(12)

where αξ describes here the accumulated attenuation along the reflected path. On a hardware level, the received signal sξ is
mixed with the emitted signal g. Signal mixing corresponds to a signal multiplication, hence the resulting signal pξ consists



of the sum and a difference of frequencies, as cos(a) · cos(b) = 1/2 (cos(a+ b) + cos(a− b)). The mixed signal is low-pass
filtered, which removes the summation term in Eq. (12) from the signal, yielding

pξ(t) ≈
αξ
2

cos

(
2π

B

Tm
τξtc + 2πfcτξ − π

B

Tm
τξ

2

)
=
αξ
2

cos

(
2π

B

Tm

2r + 2vr(nTtot + tc)

c
tc + 2πfc

2r + 2vr(nTtot + tc)

c
− π B

Tm

(
2r + 2vr(nTtot + tc)

c

)2
)

=
αξ
2

cos

(
2πtc

 B

Tm

2r

c︸ ︷︷ ︸
3.02e5−3.02e7

+
2fcvr
c︸ ︷︷ ︸

5.07e1−5.07e3

+
B

Tm

2vrtc
c︸ ︷︷ ︸

6.67e0−6.67e2

− B

Tm

4rvr
c2︸ ︷︷ ︸

2.01e−3−2.01e1

− B

Tm

2v2
r tc
c2︸ ︷︷ ︸

2.22e−8−2.22e−4



+ 2πnTtot

 2fcvr
c︸ ︷︷ ︸

5.07e1−5.07e3

− B

Tm

4rvr
c2︸ ︷︷ ︸

2.01e−3−2.01e1

− B

Tm

2v2
rnTtot

c2︸ ︷︷ ︸
1.14e−5−1.14e−1



+ 2π

 B

Tm

2vrnTtottc
c︸ ︷︷ ︸

7.54e−2−7.54e0

+
2fcr

c︸ ︷︷ ︸
5.07e1−5.07e3

− B

Tm

2r2

c2︸ ︷︷ ︸
1.01e−3−1.01e1

− B

Tm

4v2
rnTtottc
c2︸ ︷︷ ︸

5.02e−10−5.02e−6


)

with c = 3× 108 m s−1, fc = 76 GHz, B = 1 GHz, tc = Tm ≈ Ttot = 22.08 µs,

1 m ≤ r ≤ 100 m, 1 m s−1 ≤ vr ≤ 100 m s−1, n = N = 512

≈ αξ
2

cos

(
2π

(
2
B

Tm

r

c
tc + 2

fcvr
c
nTtot + 2

fcr

c

))
.

(13)

After plugging in Eq. (10) in the low-pass filtered signal and removing all components that would result in negligible values
for real radar parameters, a compact approximation can be constructed. In the main paper we further neglect the non-constant
phase term 2nTtotfcvr/c as we only derive the range estimation there, leaving the Doppler components for the Supplement.
From Eq. (13) it can be gathered, that the final signal approximation contains only three terms, a constant phase shift term, a
frequency term, another phase term that is linearly changing over different chirps. The beat frequency of the frequency shift
can be written as

fbeat =
B

Tm

2r

c
. (14)

The beat frequency is also depicted in in Fig. 12. It is much easier to measure than the time difference itself, thus, it is used
for range estimation. The range can be estimated from this beat note accordingly, using

r = c
fbeatTm

2B
with ∆r =

c

2B
. (15)

To this end, FMCW radar systems perform a Fourier analysis, where multiple targets with different path lengths (Eq. (8))
appear in different beat frequency bins.

Relative movement between the radar sensor and a reflective object results in a frequency shift in the received signal which
is commonly known as Doppler shift:

fDoppler = 2vr/λ. (16)

In order to avoid ambiguity between a frequency shift occurring from traveled distance opposed to relative movement, the
ramp slope B/Tm is chosen to be very high, so that frequency shifts due to the Doppler effect are negligible in this case.
Instead this information can be recovered by observing the linearly varying phase shift in the signals between different chirps
of the sequence for each range bin separately. This corresponds to the second term of the final result in Eq. (13). The phase
shift is also depicted in Fig. 12. More precisely, the Doppler frequency and velocity resolution can be estimated as function
of the phase shift θ between two consecutive chirps:

vr =
λ · θ

4π · Ttot
, with ∆vr =

λ

2N · Ttot
. (17)



MIMO radars use several antennas for transmitting (channel input) and receiving (channel output) signals. Multiple anten-
nas, for either receiving or transmitting signals, allow for using beamforming algorithms to estimate the angle of incidence.
The most common form of antenna distributions are uniform linear arrays (ULA) which can resolve angles within all planes
that include the array line, cf. Fig. 13. The angular resolution ∆φ is given by the aperture size D which is defined as the
distance between the two most distant antenna elements.

∆φ ≈ λ/D, with D = d (L− 1), (18)

where d is the antenna spacing, L is the total number of antenna locations, and λ is the signal’s wavelength as defined by
Eq. (5). Using conventional processing techniques, phased array antennas can separate a maximum of L − 1 targets at any
range and Doppler combination. Another estimate of the angular resolution can, thus, be gained by dividing the sensor’s field
of view (FoV) Φ by the number of separable objects

∆φ ≈ Φ/(L− 1). (19)

Both definitions are, however, only accurate within the vicinity of the FoV center. At the edges of the FoV, the angular
resolution deteriorates because of the reduced effective aperture size visible from these angle positions. For angle estimation
a single TX antenna illuminates its whole FoV and all RX antennas receive the echo signal. Under a far field assumption,
i.e., r � λ, the received signal arrives at the RX antennas as a plane wave as depicted in 13. An exact far field boundary is
hard to describe, a common definition for the lower boundary is often set to

Rmax = 2D2/λ. (20)

The signal phase shift Ω between two consecutive antenna elements can then be used to calculate the angle of incidence

φ = arcsin
Ωλ

2πd
. (21)

While theoretically only the two out-most antennas are important for angular resolution, in practical applications also the
angular ambiguity range and, therefore, the spacing between elements is important. A common element spacing is λ/2,
which is the largest spacing to fulfill the Nyquist-Shannon sampling theorem, i.e., to avoid ambiguities in the reception
pattern. Smaller spacings would either reduce the aperture size D or increase the number of antenna element locations L,
thus, increasing the hardware costs.

For MIMO processing multiple antennas for both transmitting (TX) and receiving (RX) elements are necessary. An
example distribution is depicted in Fig. 14. Depending on which of the two depicted TX antennas is used, the relative distance
between TX and RX antennas alters the reception pattern, effectively doubling the amount of receivers, but increasing the
number of receive element locations to L̃ = 2L−1 due to the overlapping middle elements. Mathematically this corresponds
to a convolution of the TX antenna distribution with the pattern of the RX antennas

pvirtual = pRX 
 pTX. (22)

Where pvirtual are the virtual phase centers corresponding to the RX and TX antenna locations pRX and pTX, respectively.
Though, mathematically identical, the reduction of physical antennas results in a great reduction in costs and physical size.
The combined array is commonly referred to as virtual array. For the receiver to be able to discriminate between TX antennas,
their signals must be decoupled, e.g., by time division multiplexing. In practical applications one ore more overlapping
elements in the virtual array are often used to correct phase and amplitude errors of the transmitted signals occurring during
antenna switching. We use an antenna setup with a single overlapping element, which leads to an effective virtual array size
of L̃ = 63 element locations. More detailed information on MIMO radar processing can found, e.g., in [3].

Besides range, angle, and Doppler, all radar targets also have their own amplitude value. In automotive radar, noisy
environments with high clutter amplitudes are common, therefore, absolute amplitude values are less important as for, e.g.,
Doppler. The received power at the RX antennas PRX can formulated using the popular radar range equation

PRX =
PTX ·GRX ·GTX · σ · λ2

(4π)3 · r4
. (23)

Where PTX is the transmitted power, GRX/TX the antenna gain for RX and TX, and σ is the radar cross section (RCS), i.e.,
the equivalent reflection area corresponding to the illuminated object. This parameter has a high variance among different



objects, incidence angles, etc. A common procedure is to reformulate Eq. (23) and actually aim to estimate the RCS

σ =
PRX · (4π)3 · r4

PTX ·GRX ·GTX · λ2
. (24)

The free-space path loss is then accounted for using r4 correction. The degree to which this is accurate depend on how
well the inherent assumption of isotropic reflection holds. Moreover, the RCS estimation in Eq. (24) does not account for
violations in the free-space assumption.

The specifications of our prototype sensor are given in Tab. 2. The first row represents the emitted frequency range f and
the operational bands for range (distance) r, azimuth angle φ, and radial (Doppler) velocity vr respectively. The second row
gives the resolutions ∆· for time t, as well as for r, φ, and vr.

Table 2: Radar sensor specifications as calculated from our sensor parameterization.

f/GHz r/m φ/ deg vr/
m
s

76− 77 0.15− 153 ±70 ±44.3

∆t/ms ∆r/m ∆φ/ deg ∆vr/
m
s

100 0.15 1.8 0.087

2.2. Radar Intensity Falloff vs. Optical Falloff

Eq. (8) describes a major difference in the intensity falloff compared to existing optical approaches. For a point source
at c, the signal falloff is proportional to 1/(rlw + rxw)2 · 1/(rxw + rwc)2 instead of 1/r2

lw · 1/r4
wx · 1/r2

wc as the wall
becomes specular for mm-waves. Note that low-cost automotive radars do not perform active beam steering but MIMO angle
estimation, see previous subsection. Therefore, in contrast to optical NLOS methods, we do not focus RF power onto a single
spot.

2.3. Radar Data Cube Processing Towards Ego-Motion Compensated Detection Points

Next, we describe the processing of the received time domain signal towards the point cloud which is the preferred data
layer for most object detection and tracking algorithms. The signal processing is usually implemented on an FPGA and run
internally by the sensor. However, in our case this pre-processing is done as a separate computation step in order to allow
more flexibility in the processing order and parameterization.

Transition from Time Domain to Frequency Domain The radar data cube is a common way for the representation of
received and sampled radar signal. For our sensor, it is a K ×N × L – more precisely 1024× 512× 64 – dimensional data
matrix, resembling the K samples per ramp, N ramps per sensor scan, and L antenna element locations. Given M object
reflections of a radar scan, the received and down-converted signal is modeled as linear superposition of complex sinosoids:

y(k, n, l) =

M∑
m=1

αme
j(ωk,mk,ωl,ml,ωn,mn) + η(k, n, l). (25)

The main part of this signal consists of a complex amplitude αm which results from the reflection properties, i.e., the radar
cross section. ωk,m, ωl,m, and ωn,m are normalized radian frequencies corresponding to the three dimensions. η(k, n, l)
resembles a noise term. In the next step, the data cube is transformed to the frequency domain, where the three dimension
directly represent range, angle, and radial velocity. As transformation operation often a discrete Fourier transformation
(DFT) is utilized. The Fourier transformation can be implemented using a fast Fourier transformation (FFT) algorithm. The
transformed signal after the i’th DFT can then be written as:

Y(3)(k, n, l) =

L−1∑
l=1

N−1∑
n=1

K−1∑
k=0

y(k, n, l) · hK(k) · hN (n) · hL(l) · e−j(ωkk,ωll,ωnn). (26)

ωk, ωl, and ωn are now discrete frequencies in range, angle, and radial velocity.



All these different conditions call for an adaptive thresholding in the detection procedure. In
a first step, the unknown stochastic parameter of a certain background signal will always be
estimated by analysing the signal inside a fixed window size, which is oriented in the range
direction surrounding the radar test cell. The general detection procedure is shown in a block
diagram in Figure 1 where the sliding range window is split into two parts, the leading and
lagging part surrounding the test cell. Additionally, some guard cells are introduced to reduce
self-interferences in a real target echo situation. All data inside the reference window will be
used to estimate the unknown clutter parameter and to calculate the adaptive threshold for target
detection.
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Figure 1: General architecture of range CFAR procedures

All the background signals, undesired as they are from the standpoint of target detection and
tracking, are just denoted as “clutter”. The detection procedure has to distinguish between
useful target echoes and all possible clutter situations. Clutter is not just a uniformly distributed
sequence of random variables, but can be caused in practical applications by a number of
different physical sources. Therefore, the length N of the sliding window will be chosen already
as a compromise based on rough knowledge about the typical clutter extension. To get good
estimation performance (low variance) in a homogeneous clutter environment, the window sizeN
should be as large as possible. However, the window length N must be adapted simultaneously
to the typical extension of homogeneous clutter. In typical air traffic control radars the number
of range cells in the reference windows is e.g. between N = 16 and N = 32.

Figure 15: General architecture of range CFAR procedures. Figure copied from [10], Fig. 1.

Constant False Alarm Rate Filtering Once the radar data cube has been fully transformed to the frequency domain, i.e.,
is resolved in range, angle, and Doppler, standard procedure is to apply a constant false alarm rate (CFAR) filter in order
to maximize the target detection probability in a noisy environment with a lot of clutter. To discriminate between noise,
background reflections, and the objects of interest, aka. targets, the data is filtered using amplitude thresholds. As for real
world applications, noise and clutter can vary heavily between measurements, adaptive thresholds become necessary. This
adaptation to different environments is achieved by the CFAR detector. Its general architecture is depicted in Fig. 15 for the
one-dimensional case. We illustrate the CFAR detector according to [10] and keep close to their nomenclature in order to
match with Fig. 15, but highlight differences to previously used variables with subscripts. The basic principle is to use a fixed
window size Nw in the direction of the examined dimension. The cell under test is in the middle of the window surrounded
by two or more guard cells which serve to mitigate cell migrations effects, i.e., energy leaking to cells around the best-fitting
one. The remainder of the window is used to calculate a clutter estimate Z which serves as basis for the final threshold level
εCFAR.

Many different CFAR algorithms exist and a lot of them only differ in how they calculate the clutter estimate Z. Two
popular variants are the so-called cell averaging (CA) and the ordered statistics (OS) CFAR.

CA CFAR simply uses the arithmetic mean of amplitudes X (corresponds to Y in previous paragraph) among the Nw
neighbors in cell the window.

ZCA =
1

Nw

Nw∑
i=1

Xi (27)

OS CFAR, in comparison, first orders all Nw amplitudes according to their magnitude. The clutter estimate in this case is
replaced by the k’th rank among amplitudes.

X(1) ≤ ... ≤ X(k) ≤ ... ≤ X(Nw) (28)

ZOS = X(k) (29)

In both cases, the final threshold level εCFAR is obtained by multiplications of the clutter estimate with an appropriate
scaling factor S:

εCFAR = S · Z with Z ∈ {ZCA,ZOS}. (30)

Finally, the threshold is used to obtain a sparse point cloud U from the data:

U = {x ∈ X | x ≥ εCFAR}. (31)



The CFAR detector can be applied in this form in all three dimensions separately, or it maybe be combined to a 2D + 1D
or even 3D algorithm. Multidimensional CFAR detectors naturally have a broader perspective across domains, however, they
are much more computationally complex. For practical automotive applications it is important to note, that moving targets
are generally easier to detect than stationary ones. In real-world automotive scenarios, there is always a lot of background
reflectors, e.g., houses, trees, but at least the ground which maybe an even road in the best case or an uneven off-road scenario
with many stones etc. This results in a lot of energy, i.e., high amplitudes, residing areas close to zero-velocity (ego-motion
neglected) of the processed data cube. Hence, it is easier for a moving target to exceed the CFAR threshold level, thus,
leading to a detection.

Ego-Motion Compensation One important advantage of radar sensors is their ability to directly measure relative move-
ment, i.e. Doppler velocities, at very small hardware costs. For in-the-wild NLOS detections in road scenarios, sensing
around corners must start while approaching a hidden object on collision course. In order to make full use of the radar sen-
sors’ capabilities, the measured radial velocities vr have to be compensated for vehicle ego-motion during the measurement.
Let vego be the signed absolute velocity and φego the yaw rate of the ego-vehicle measured from the center of the rear axle
of the car. For positive values, vego always points perpendicular to the rear axle towards the front of the car, i.e., only has
an x-component in a car coordinate system. A more elaborate overview of coordinate system is given in Sec. 3. Then the
velocity at the sensor vsensor can be calculated as:

vsensor =

(
vego +my · φego

mx · φego

)
, (32)

where mx and my represent the mounting position of the sensor in x and y corresponding to the car coordinate system. Then
the ego-motion compensated radial velocity ṽr,i of the i’th detection can be expressed as the difference between the measured
value vr,i and the radial component of the sensor velocity towards the corresponding radar detection point:

ṽr,i = vr,i − vTsensor ·
(

cos(φi + φego)

sin(φi + φego)

)
(33)

We use an inertial measurement unit (IMU) to estimate vego and φego. Note, it is also possible to use the sensory data itself
for ego-motion compensation. Therefore, the assumption is made, that most of the detections of one radar cycle correspond
to non-moving objects. Then, these detections can be used as an alternative derivation of the subtrahend in Eq. (33).

Sensor Specific Processing Chain The radar sensors used for this task are experimental radar sensors that – opposed to
most commercially available radar sensors – do not include an internal detection processor. This gives us some additional
degrees of freedom for these processing steps. Specifically, we combine the above described processing steps in the following
manner:

1. Compute the two-dimensional FFT Y(2) in the range and Doppler domain in accordance with Eq. (26).

2. Apply a two-dimensional OS CFAR detector based on range and Doppler domain. The detector is empirically set to
Nw = 20 using the 70’th percentile for k.

3. For all remaining range-Doppler bins, i.e., the ones detected by the CFAR filter:

• Zero-pad the data along the angular dimension. This results in finer angular cell spacing, i.e., higher resolution
as the zero-padded version L̃ > L.

• Compute the third and final DFT in angular direction, resulting in a variant of Ỹ(3) which is already sparse in the
range and Doppler domain.

• Apply a CA CFAR algorithm in angular domain resulting in the final point cloud U according to Eq. (31). The
detector is empirically set to Nw = 30.

4. Perform ego-motion compensation (Eq. (33)), RCS estimation (Eq. (24)), and transform the sensor data to a unified
coordinate system as discussed in Sec. 3.2, Eqs. (39, 40).



The main advantage of this processing chain, is that by allowing an improved spectrum estimation in the angular domain
compared to standard 3D FFT processing, this approach leads to reduced antenna side lobe levels. These would otherwise lead
to additional unwanted detections of strong reflective targets. Moreover, the reduced amount of computational complexity
enables real-time processing on a standard GPU, e.g., 4 GB GeForce GTX 760. The major part of computational saving
stems from the utilization of a 2D instead of a 3D CFAR algorithm in step 2. Furthermore, the third DFT and CFAR is
only computed on the range-Doppler cells, which actually exceeded the CFAR threshold levels in step (2), which drastically
reduces the computational effort for this step as well.

2.4. Detection Processing

Once the sensor has been processed, we obtain one ego-motion compensated point cloud of detections for each radar
sensor. To merge the data streams from multiple sensors all data is transformed to a common coordinate system. Usually
data is accumulated over short time frames, which are at least as large as to fit all sensors of the setup in once. To accumulate
data over multiple time steps, a second coordinate transformation has to compensate the test vehicle’s ego-motion during the
observed time frame. The complete transformation procedure is derived in Sec. 3.2.

After transforming all data point to a common coordinate system, we utilize the fact, that we are mainly interest in the
detection of moving road users, i.e., ‖v‖ > 0. Therefore, we deploy a filtering algorithm, which removes undesired detection
points. We examined two different approaches. Let U be a CFAR filtered and ego-motion compensated radar point cloud
consisting of less than 104 points:

U =
{(
φ̃, r̃, ṽr, σ̃

)
i
| 1 ≤ i ≤ R

}
with R < 104, (34)

where every point is described by its angular and range position, its ego-motion compensated radial velocity, and the RCS
level estimated from the received power amplitude. Then our two detection filtering processes can described as follows:

1. Pure velocity-based filtering: For this approach, we retain all detections ui exceeding a certain velocity threshold η:

Ũ1(η) =
{
ui ∈ U | |ṽr,i| ≥ η

}
. (35)

The advantage of this method is its simplicity and extremely efficient implementation. We empirically choose a threshold
level of η = 0.1 m s−1, which filters out over 95 % of detection values. The drawback of this approach is, that filtering may
falsely remove some detections belonging to actual road users. This is due to the discrepancy of real velocity v and radial
velocity vr, but can also occur due to stationary object parts such as the pedestrians supporting leg or the part of a wheel that
touches the road surface. Furthermore, the filter is very susceptible to small variations in η and may quickly lead to filter
under- or overperformance, i.e., filtering out too few or too many points.

2. Velocity-density-based filtering: To incorporate also those close-by detection points, our second filtering approach
evaluates not only the radial velocity of each detection, but also the velocities of close-by points. The first filter criterion is
identical to the first approach, i.e., all points exceeding an absolute radial velocity of η1 are retained. Moreover, if another
point with sufficient absolute velocity is found in close distance, both points remain in the pointcloud. Thereby, a maximum
distance region γ around each point is selected according its own radial velocity. Finally, points are also retained, if the have



a certain number of neighbors θ within close distance:

Ũ2(η, γ, θ) =

{
ui ∈ U

∣∣∣ (|ṽr,i| ≥ η1)

∨
(

(η1 > |ṽr,i| ≥ η2) ∧ ∃uj �= ui :
(

(|ṽr,j | ≥ η1) ∧ (Γ(ui,uj) ≤ γ2)
))

∨
(

(η2 > |ṽr,i| ≥ η3) ∧ ∃uj �= ui :
(

(|ṽr,j | ≥ η1) ∧ (Γ(ui,uj) ≤ γ3)
))

∨
(

(η3 > |ṽr,i| ≥ η4) ∧ ∃uj �= ui :
(

(|ṽr,j | ≥ η1) ∧ (Γ(ui,uj) ≤ γ4)
))

∨
(

(η4 > |ṽr,i| ≥ η5) ∧ ∃uj �= ui :
(

(|ṽr,j | ≥ η1) ∧ (Γ(ui,uj) ≤ γ5)
))

∨
(

(|ṽr,i| ≥ η3) ∧
∣∣{uj ∈ U | Γ(ui,uj) ≤ γ2, uj �= ui

}∣∣ ≥ θ1)
∨
(

(|ṽr,i| ≥ η4) ∧
∣∣{uj ∈ U | Γ(ui,uj) ≤ γ2, uj �= ui

}∣∣ ≥ θ2)
∨
(

(|ṽr,i| ≥ η3) ∧
∣∣{uj ∈ U | Γ(ui,uj) ≤ γ3 ∧ η1 > |ṽr,j | ≥ η3, uj �= ui

}∣∣ > θ3

)}
with Γ(ui,uj) =

√
r̃2i + r̃2j − 2r̃ir̃j cos(φ̃i − φ̃j).

(36)

This filter is more complex and also requires a more fine tuning of the involved parameters. It can, however, also be
implement in a very efficient way using a DBSCAN clustering algorithm with, e.g., a k-d tree backbone [12]. We use an
empirically determined parameterization of η1 = 0.5, η2 = 0.375, η3 = 0.25, η4 = 0.125, η5 = 0, γ2 = 0.25, γ3 = 0.5,
γ4 = 1.0, γ5 = 1.5, θ1 = 51, θ2 = 101, θ3 = 26. This setting still achieves a point reduction of over 90 %, but is better
prepared to preserve static points with potential VRU correspondence. Another major advantage is the increased flexibility of
the absolute minimum velocity threshold η1 compared to η in the first approach, which is more robust to noisy measurements.

We conducted experiments for both filter settings, but opted for the the first approach for inference, because of its simplicity
and time-efficiency for practical applications. For training and annotation, we rely on the second, more complex filter.

3. Setup and Prototype Details
In this section, we provide a detailed description of the setup components and calibration procedures.

3.1. Setup Details

All measurements for this article have been recorded using the test vehicle depicted in Fig. 16. The car is equipped with
several sensors as indicated in Fig. 16. Further information regarding the mounting positions of the components involved in
the recordings for this article can be found in Fig. 17. Moreover, the car contains several computers and interfaces concerned
with the sensor control and recording. The most important part about the setup are two radar sensors in the front bumper of
the car. The sensors are two identical experimental FMCW radar sensors operating with chirp sequence modulation. They are
highly flexible in their ranges of parameter settings and can be adjusted according to requirements, e.g., short range vs. mid
range measurement. For this article we decide on a mid range configuration with a wide field of view (FoV), i.e., ideal for
urban situations or intersections. An overview of their exact configuration during our experiments can be found in Tab. 2. The
only other sensor that is directly involved in our perception system is an experimental four layer lidar sensor. In the proposed
system it serves for the recognition of the reflector’s geometry. All other sensors mostly serve to improve the data quality.
Therefore, global navigation satellite system (GNSS) unit and inertial measurement unit (IMU) are used for ego-motion
compensation of measured Doppler velocities, or for a positional compensation when accumulating multiple measurements.
Furthermore, the additional sensors facilitate the data labeling process, e.g., Wi-Fi, GNSS, and IMU are used for automated
labeling as described in supplement Sec. 1.2. The camera helps for label correction or general scene understanding during
offline processing. The GNSS system uses two satellite systems (GPS and GLONASS) and operates with real-time kinematic
(RTK) positioning. As described in Sec. 1.2, RTK is a differential version of GNSS processing which uses an additional base
station with known location in close distance to the position of the object of interest. The comparison of the signals of both
GNSS receivers allows to correct many errors in the signal, effectively allowing to reach centimeter-accuracy. The addition
of the IMU complements the GNSS location with an orientation estimate and also helps to correct the locations in case of
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Figure 16: Prototype vehicle with measurement setup.

limited GNSS reception using an internal Kalman filter which fuses the signals from GNSS and IMU. All sensors including
their key performance indicators can also be found in Tab. 3. We note, that a full sensor cycle over all sensors involved in
the non-line-of-sight detection system, i.e., radar, lidar, IMU, and GNSS, takes only 100 ms and might even be accelerated to
50 ms using a different radar configuration. The low update rate of the camera is explicitly set to the same value in order to
save storage.

Table 3: Specifications for all sensors on the ego-vehicle.

Sensor Description

Radar Experimental FMCW radar sensors with MIMO configuration and chirp sequence mod-
ulation: Frequency band: 76 GHz to 77 GHz. Variable parameters depending on soft-
ware configuration. The operational bands and resolutions of the chosen setting can a
given in Tab. 2. Vertical FoV 10◦. Sensor cycle time: 22.6 ms. Update rate: 10 Hz

Lidar Experimental 4 layer lidar sensor: FoV 145◦ horizontally and 3.2◦ vertically. Max range
327 m. Resolution 0.25◦ horizontally and 0.04 m in range. Range accuracy: <0.1 m.
Update rate: 25 Hz.

IMU GeneSys ADMA-G-PRO combined IMU and GNSS receiver: Three fiber-optic rotation
rate sensors and three servo acceleration sensors. Angular resolution 0.005◦, velocity
accuracy 0.01 m s−1 RMS. All values assuming settled Kalman filter. Update rate:
100 Hz.

GNSS GeneSys ADMA-G-PRO with integrated GNSS receiver: Novatel OEM-628. Recep-
tion of GPS and GLONASS. 4.5 dBi antenna gain, RTK processing with up to 0.8 cm
horizontal position accuracy. Base update rate: 20 Hz with interpolation from Kalman
filter fusing IMU and GNSS to 100 Hz.

Camera AXIS F1015 camera: Resolution 1920 × 1080 pixels, varifocal lens, wide angle mode
with horizontal FoV up to 97◦. Update rate: 10 Hz.

Wi-Fi Omnidirectional tri-band antenna: Outdoor version, 5.5 dBi antenna gain, frequency
bands at 2.4 GHz and 5 GHz.
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Figure 17: Car setup schematic.

3.2. Calibration Procedure

This subsection deal with error correction, initialization, and coordination of different sensors.

Radar Calibration Phase and attenuation inaccuracies by the radar sensors have been measured by the manufacturer in an
anechoic room. Complex correction factors are applied for each measurement scan directly after recording.

IMU and GNSS Initialization For the combined IMU and GNSS module to work properly, it needs to be initialized prior
to the first recording. This mainly serves to settle the internal Kalman filter fusing both, IMU and GNSS, signals. The
initialization procedure consists of three steps, estimated times are indicated in brackets:

1. Standstill phase (10 s)

2. Straight acceleration phase (< 5 s)

3. Dynamic driving phase (> 120 s)

During standstill the IMU uses its accelerometers to estimate its orientation towards the gravitational center of the earth, i.e.,
the cars pitch and roll. Doors must remain closed and drivers must not move during this phase. During the next phase the
vehicle is accelerated over a preset threshold velocity in order to fix its yaw angle estimation. The acceleration has to be
executed on a line as straight as possible, and higher velocities are preferred. This is due to utilization of the GNSS velocity
for yaw angle estimation which will be more accurate for higher velocities. Finally, during the dynamic driving phase, the
internal Kalman filter is supposed to settle. In this step, the errors made by the laser gyroscopes and the servo accelerometers



are estimated and corrected. For fast convergence this phase should mainly consist of narrow eight-shaped circles or zigzag
lines, as well as acceleration and deceleration maneuvers. This procedure is followed for both pose estimation systems of
ego-vehicle and VRU, respectively.

Common coordinate system The original representation of each measured radar detection is given in the sensor coordinate
(sc) system. The utilization of several spatially distributed sensors required that all sensory data is transformed to a common
car coordinate (cc) system for further processing. The car coordinate system is located in the center of the rear axle of the car
as depicted in Fig. 17. The utilized radar sensor estimates only horizontal variations, thus we focus on the two-dimensional
transformation in x and y coordinates.

Given a single radar detection point psc,
psc = (xsc, ysc)

T , (37)

we first expand the position vector to yield:

p̃sc =
(
pxsc,p

y
sc, 1
)T
, (38)

the transformation is performed by multiplication with an appropriate transformation matrix Ts2c:

p̃cc = Ts2c · p̃sc with Ts2c =

cosmφ − sinmφ mx

sinmφ cosmφ my

0 0 1

 , (39)

where p̃cc is the extended version of the detection point in car coordinates, mx, my , and mφ are the mounting offsets of the
sensor in x and y direction, and yaw angle φ, respectively.

Similarly, points can be accumulated over multiple time steps by compensating the ego-motion of the vehicle during the
same time frame. This common practice in radar processing as it increases the number of detection points for a scene. We
call the respective coordinate system frame coordinate system (fc). The transformation matrix Tc2f and the transformation
itself are almost identical to Eq. (39):

p̃fc = Tc2f · p̃cc with Tc2f =

cos sφ − sin sφ sx
sin sφ cos sφ sy

0 0 1

 , (40)

where p̃fc is the extended version of the detection point in frame coordinates, i.e. the car coordinate system at the beginning
of the examined frame. Then mx, my , and mφ correspond to the traveled distance and change in orientation during the
beginning of the accumulation frame and the measurement of the detection, again in x and y direction, and yaw angle φ.

4. Reconstructing Third-Bounce Objects and Estimating Velocities
In this section we describe in detail how to reconstruct a real detection x from a third bounce or virtual detection x′.

Furthermore we explain how to estimate the real velocity of a detection by assuming it moves parallel to the relay wall.

4.1. Third-Bounce Geometry Estimation

This is a detailed overview on how to reconstruct a detection point x from a virtual detection x′ given a relay wall
p = p2−p1 represented by its two endpoints p1 and p2. The endpoints are computed by the relay wall estimation described
in Sec. 5.4. To decide if x′ is a virtual detection we have two criteria. First, we need to decide whether the radar sensor c
and the detection x′ are on opposite sides of the relay wall. Second, we check whether the intersection w of x′ with the relay
wall lies between the endpoints p1 and p2. See Fig. 18 for an overview.

To check whether c and x′ are on opposite sides of the relay wall we use the signed distance. For this we need the normal
nw of the relay wall. We use the convention that nw must point away from c, again use Fig. 18 as a reference. If the signed
distance nw · (x′ − p1) ≥ 0 then c and x′ are on opposite sides of wall. Next we calculate the intersection w using basic
linear algebra

w = c +
(p1 − c)× p

(x′ − c)× p
(x′ − c). (41)

Where × denotes the 2D cross product a× b = a1b2 − a2b1 = a⊥ · b. This is also known as the perp dot product since it is
the normal dot product where a is replaced by the perpendicular vector a⊥ rotated 90 degrees anticlockwise.



We decide whether w lies between p1 and p2 by checking if ‖w − p1‖ ≤ ‖p2 − p1‖ and ‖w − p2‖ ≤ ‖p2 − p1‖. To
summarize: A detection x′ is a virtual detection if the following is true

nw · (x′ − p1) ≥ 0 ∧ ‖w − p1‖ ≤ ‖p2 − p1‖ ∧ ‖w − p2‖ ≤ ‖p2 − p1‖ , (42)

otherwise it is in direct line of sight.
To reconstruct the original detection x from the virtual detection x′ we make the assumption that all reflections are

perfectly specular. Reconstruction is done by mirroring the incident ray w − c along the normal nw

w − x

‖w − x‖
=

w − c

‖w − c‖
− 2

(
nw ·

w − c

‖w − c‖

)
nw, (43)

with w − x being the outgoing direction. Rearranging the terms and using ‖w − x‖ = ‖w − x′‖ yields the reconstructed
detection

x =

(
w − c− 2 (nw · (w − c))nw

)
‖w − x′‖

‖w − c‖
. (44)

4.2. Third-Bounce Velocity Estimation

After reconstructing x from x′ we can estimate the underlying velocity vector v from the radial velocity vr of x′. This is
done by assuming that the underlying object, which reflected the detection x, is moving parallel to the relay wall.

We want to recall that the radial velocity vr of an object at point x relative to the sensor c is given by the dot product
between the normalized vector x − c and the velocity v. However in our case we did not measure the radial velocity of x
directly, but the radial velocity of the virtual detection x′. Therefore we have to consider the vector x− c instead of x′ − c.
Overall this yields a relation between the radial velocity vr and the angle ϕ between x′ − c and v

vr =
(x′ − c) · v
‖x′ − c‖

=
‖x′ − c‖ ‖v‖
‖x′ − c‖

· cos(ϕ) = ‖v‖ · cos(ϕ). (45)

Note that ϕ depends on the directions of v and x′− c. Changing either direction of v or x′− c results in an angle ϕ̃ = π−ϕ
with cos(ϕ̃) = − cos(ϕ). Using this insight we can ignore the directions of v and x − c to calculate ‖v‖ by using the
following formula

‖v‖ =
vr

cosϕ
=
|vr|
|cosϕ|

. (46)
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Figure 18: NLOS geometry and velocity estimation from indirect specular wall reflections. The hidden velocity v can be reconstructed
from the radial velocity vr by assuming that the road user moves parallel to the wall, i.e., on a road. The figure indicates all required angles
and vectors.
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Figure 19: NLOS detection architecture. The network accepts the radar point cloud data at current frame T as input, and outputs predictions
for frame T . The features are downsampled twice in the pyramid network, and then upsampled and concatenated by the zoom-in network.

To estimate the velocity v we need the normalized relay wall vector p̃ = p · ‖p‖−1. Since we assume the object is moving
parallel to the wall we derive v = s · p̃ for some s ∈ R. Since ‖p̃‖ = 1 we know |s| = ‖v‖. Because the sign of s depends
on the direction of p̃ and therefore p, we need a convention to determine p. By convention we require p = p2 − p1 to be
rotated π

2 radians anti-clockwise to the wall normal nw which was defined earlier. Intuitively this means p points to the left
if the wall is in front of the sensor, this case is depicted in Fig. 18.

With this convention and |s| = ‖v‖ = |vr|
|cosϕ| the remaining part is to determine the sign of s. This comes down to the

sign of vr and the angle between the normal nw and the outgoing ray x′ − c. We define γx′ and γw as the angles of x′ − c
and nw relative to the sensor’s coordinate system, again see Fig. 18. The sign of s is then given by

sgn(s) = sgn(vr) · sgn(γx′ − γw). (47)

In the above equation (47) the sign of vr distinguishes approaching and departing objects. Whereas, sgn(γx′−γw) determines
the object’s allocation to the left or right half-plane with respect to the normal nw. Together, they encode the direction of the
velocity v. Putting everything together yields the estimated velocity

v = sgn(vr) · sgn(γx′ − γw) · |vr|
|cosϕ|

· p̃. (48)

This method of reconstructing a velocity vector from a radial velocity is not limited to the specific scenario we are
considering here. This can be applied whenever we have strong believes about the direction an object is moving. For
example we could obtain the road geometry from a map or by use of additional sensors.

5. Model Architectures & Experimental Settings
In this section, we explain the architecture and training details of the detection models and tracking models we used in

Tab. 1 and Tab. 2 in the main paper.

5.1. Detection Models

The detection task is to estimate oriented 2D boxes for pedestrians and cyclists, given a BEV point cloud Ũ as input.

5.1.1 Proposed Detection model

The overall proposed detection pipeline consists of three main stages: (1) input parameterization that converts a BEV point
cloud to a sparse pseudo-image; (2) high-level representation encoding from the pseudo-image using a 2D convolutional
backbone; and (3) 2D bounding box regression and detection with a detection head.

Fig. 19 shows the network architecture we used for detection. This model is mostly the same as the tracking model shown
in Fig. 20 , except that there is only a single frame at timestamp T in both input and output (n = 0) and that consequently
there is no feature map fusion across multiple frames between the pyramid network and the zoom-in network.

Input Parameterization We denote by u a d-dimensional (d = 4) point in a raw radar point cloud Ũ with coordinates x, y
(derived from the polar coordinates φ̃, r̃), velocity ṽr, and amplitude σ̃. We first preprocess the input by taking the logarithm



of the amplitude σ̃ to get an intensity measure s = log σ̃. As a first step, the point cloud is discretized into an evenly spaced
grid in the x-y plane, resulting in a pseudo-image of size (d − 2, H,W ) where H and W indicate the height and width of
the grid, respectively. Note that the final number of channels of the pseudo-image is d− 2 instead of d, because the location
information is encoded implicitly. Specifically, we mark each pixel that has points fallen into by putting intensity values of
the points into that pixel, i.e., we do not explicitly encode the two location values of each point into the features of each pixel.
We sum up the intensities from all points falling into the same pixel.

High-level Representation Encoding To efficiently encode high-level representations of the hidden detections, the backbone
network contains two modules: a pyramid network and a zoom-in network. The pyramid network contains two consecutive
stages to produce features at increasingly small spatial resolution. Each stage downsamples its input feature map by a factor
of two using three 2D convolutional layers. Next, a zoom-in network upsamples and concatenates the two feature maps from
the pyramid network. This zoom-in network performs transposed 2D convolutions with different strides. As a result, both
upsampled features have the same size and are then concatenated to form the final output. All (transposed) convolutional
layers use kernels of size 3 and are interlaced with BatchNorm and ReLU, as shown in Fig. 19.

Detection Head The detection head follows the setup of Single Shot Detector (SSD) [4] for 2D object detection. Specifically,
each anchor predicts a 3-dimensional vector for classification (background / cyclist / pedestrian) and a 6-dimensional vector
for bounding box regression (center, dimension, orientation, and velocity of the box).

Loss Functions Our overall objective function for training the proposed detection model contains a localization term and a
classification term balanced by two weight factors α and β:

L = αLloc + βLcls. (49)

The localization loss is applied only to the frame T :

Lloc = LlocT =
∑

u∈{x,y,w,l,θ,v}

αu|∆u|, (50)

where ∆u is the localization regression residual between ground truth (gt) and anchors (a) defined by (x, y, w, l, θ):

∆x = xgt − xa, ∆y = ygt − ya, ∆v = vgt − va,

∆w = log
wgt

wa
, ∆l = log

lgt

la
, ∆θ = sin(θgt − θa). (51)

We do not distinguish the front and back of the object, therefore all θ’s are within the range [−π2 ,
π
2 ). We also do not

normalize ∆x and ∆y due to the noise of the data.
The classification loss is the focal loss Lcls from [4]:

Lcls = −α(1− pa)γ � log(pa)� ygt, (52)

where � is the element-wise product between 3-dimensional vectors. 1 is filled with ones, pa is the anchor a’s probability
predictions (after applying softmax to the last layer’s output) for the three classes, and ygt is a one-hot vector encoding the
true class label.

5.1.2 Baselines

SSD Baseline The input parameterization and detection head is the same as that of the proposed model. The backbone is
a 3-layer convolutional neural network, with each layer followed by a ReLU layer. The (kernel size, stride, output channel
number) settings for the three layers are: (3, 2, 8), (3, 1, 16), (3, 1, 32), respectively. This model has been trained on the same
data set as the proposed model, with the manually optimized hyperparameters.

PointPillars Baseline We adopted a version for BEV point cloud detection from the original PointPillars for 3D detection.
The input is 7-dimensional, including x, y, xc, yc, xp, yp, and s, where x, y are the 2D locations, the c subscript denotes
distance to the arithmetic mean of all points in the pillar, the p subscript denotes the offset from the pillar x, y center, and s
denotes the intensity, following the notations used in [2]. All the other settings are kept the same as the original model. This
model has been trained on the same data set as the proposed model, with the manually optimized hyperparameters.
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Figure 20: NLOS detection and tracking architecture. The network accepts the current frame T and the past n radar point cloud data as
input, and outputs predictions for frame T and the following n frames. The features are downsampled twice in the pyramid network, and
then upsampled and concatenated by the zoom-in network. We merge the features from different frames at both levels to encode high-level
representation and fuse temporal information.

5.2. Tracking models

Our model jointly learns tracking with future frame prediction, inspired by Luo et al. [6]. At each timestamp, the input is
from current and its n preceding frames, and predictions are for the current plus the following n future frames.

One of the main challenges is to fuse temporal information. A straightforward solution is to add another dimension
and perform 3D convolutions over space and time. However, this approach is not memory-efficient and computationally
expensive given the sparsity of the data. Alternatives can be early or late fusion as discussed in [6]. Both fusion schemes first
process each frame individually, and then start to fuse all frames together.

Instead of such one-time fusion, our approach leverages the multi-scale backbone and performs fusion at different levels.
Specifically, we first perform separate input parameterization and high-level representation encoding for each frame as de-
scribed in Sec. 5.1.1. After the two stages of the pyramid network, we concatenate the n+ 1 feature maps along the channel
dimension for each stage. This results in two feature maps of sizes

(
(n+ 1)C1,

H
2 ,

W
2

)
and

(
(n+ 1)C2,

H
4 ,

W
4

)
, which are

then given as inputs to the two upsampling modules of the zoom-in network, respectively. The rest of the model is the same
as that of the detection model. By aggregating temporal information across n + 1 frames at different scales, the model is
allowed to capture both low-level per-frame details and high-level motion features. We refer to Fig. 20 for an illustration of
our architecture.

Loss Functions Our overall objective function for tracking contains a localization term and a classification term
L = αLloc + βLcls. (53)

The localization loss is a sum of the weighted localization loss for the current frame T and n frames into the future:

Lloc =

T+n∑
t=T

βtLloct with Lloct =
∑

u∈{x,y,w,l,θ,v}

αu|∆u|, (54)

where ∆u is the localization regression residual between ground truth (gt) and anchors (a) defined by (x, y, w, l, θ):
∆x = xgt − xa, ∆y = ygt − ya, ∆v = vgt − va,

∆w = log
wgt

wa
, ∆l = log

lgt

la
, ∆θ = sin(θgt − θa). (55)

We do not distinguish the front and back of the object, therefore all θ’s are within the range [−π2 ,
π
2 ). For classification, we

adopt the focal loss Lcls from [4]:
Lcls = −α(1− pa)γ � log(pa)� ygt, (56)

where � is the element-wise product between 3-dimensional vectors. 1 is filled with ones, pa is the anchor a’s probability
predictions for the three classes, and ygt is a one-hot vector encoding true class label.



5.3. Training Details

Data sets We split the original data set into non-overlapping training and validation sets, where the validation set consists
of four scenes with 20 sequences and 3063 frames. For both training and validation, the region of interest is a large area of
60 m × 80 m. We use resolution 0.1 m to discretize both x, z axes into a 600× 800 grid.

Input Parameterization For each tracking model used in the experiments, it takes the current and the preceding three
frames as input and predicts the bounding box for the current and the three future frames, i.e., n = 3. For the model with
velocity (v), the final feature map size after input parameterization is (2, H,W ) (both v and s are encoded); for the model
without velocity (v), the final feature map size after input parameterization is (1, H,W ) (only s is encoded). For pixels that
have more than one point fallen into after discretization, we average all the velocity values of the points within that pixel
and sum up all the intensity values of the points within that pixel. We also experimented with averaging the intensity values,
but find that the result is not improved. We think the reason may be that accumulated intensities also indicate the density of
points in the grid, which helps with detection.

Detection Head For training, we assign each ground truth box to its highest overlapping predicted box. We only associate
one bounding box with each feature map cell. And the associated bounding box is positive if and only if it is located at the
same feature map cell where the ground truth box is located.

Loss Functions In our experiments, we set n = 3 for the tracking frame number, and we used α = 1, β = 1 for the overall
loss function:

L = αLloc + βLcls. (57)
The overall localization loss Lloc is a weighted sum of the 4 Lloct ’s of the individual frames:

Lloc = LlocT + 0.75LlocT+1
+ 0.5LlocT+2

+ 0.25LlocT+3
. (58)

The loss weight αu for different localization parameters are αx = αy = 0.75, αw = αl = 1, αθ = 1.25, αv = 1 for both
detection and tracking models. For the classification loss, we set α = 0.99, γ = 2 for the focal loss:

Lcls = −α(1− pa)γ � log(pa)� ygt, (59)

We train from scratch using Adam optimizer to optimize L, with learning rate 0.001, β1 = 0.9, and β2 = 0.999. We train
on a single GPU for 30 epochs when it converges. The batch size is 32 and 4 for detection and tracking model, respectively.

We also report the performance of our tracking model in terms of speed during inference stage. We test the tracking model
that, in one forward pass, simultaneously takes as input the current and preceding 3 frames and predicts for the current and
future 3 frames. During inference, this unoptimized tracking model runs 40 ms on three consumer GPUs for one forward
pass.

(a) Raw lidar BEV point cloud. (b) Raw Detections. Detected line
segments after using the LSD al-
gorithm.

(c) Filtered Detections. Line seg-
ments after filtering those with
length shorter than 1m in 21b.

(d) Filtered and Merged Detec-
tions. Final relay wall estimation
result after applying the merging
procedure to the overlapping par-
allel segments.

Figure 21: Visualizations of estimated relay walls at different filtering stages.



5.4. Relay Wall Estimation

We use first-response pulsed lidar measurements of a separate front-facing lidar sensor to recover the geometry of the
visible wall. Specifically, we found that detecting line segments in a binarized binned BEV is robust using [15], where each
bin with size 0.01 m is binarized with a threshold of 1 detection per bin. We observe that raw detections from the LSD
algorithm contain two types of artifacts. The first artifact is the short line segments, which we filter out by using the threshold
of 1 m. The second artifacts are overlapping parallel segments that correspond to either a part or the whole of the same
mirror1, which we address by merging them into a big segment. The result of this process is shown in Fig. 21.

We show raw lidar BEV point clouds in Fig. 21a and detected line segments after using the LSD algorithm in Fig. 21b.
Without the post-processing step, it can be observed that there are many short and overlapping segments in this raw detection.
Fig. 21c shows the line segments after filtering those with length shorter than 1 m. Finally, Fig. 21d shows the final relay wall
estimation result after merging the overlapping parallel segments.

6. Additional Results
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Figure 22: Additional joint detection and tracking results on LOS objects in training data set. Note that all the previous figures of joint
detection and tracking results are for NLOS objects in testing data set. Here, as a sanity check, we also show the LOS object detection and
tracking results on training data set, which is a much easier task than NLOS object prediction on testing data set.
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Figure 23: Additional joint detection and tracking results on NLOS objects in testing data set. Here, we show more results where a hidden
object became visible by lidar but not radar. Due to noisy data in some of these frames, there are no labeled radar points. However, our
model is able to detect correctly by reasoning about sequences of frames instead of a single one, validating the proposed joint detection
and tracking approach.

1two parallel segments are overlapping if one segment contains a part of other segment’s projection onto it
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Figure 24: More joint detection and tracking results on testing data sets. The four scenes are the same as shown in the main paper. Here
we show more frames where the NLOS objects are jointly detected and tracked by our model.



z

-x

z

-x

z

-x

z

-x z

-x

z

-x

z

-x

z

-x

z

-x

Figure 25: Tracking trajectories for both training and testing data sets. Here we show nine scenes in total. The top-middle scene and the
last three scenes are from the testing data set. For each scene, the first row is the trajectory and the second row is the front-facing vehicle
camera. We can see a variety of wall types, trajectories and viewpoints of the observing vehicles.



In Fig. 22, we show more joint detection and tracking results on NLOS objects in training data set. Note that all the other
figures of joint detection and tracking results are for NLOS objects in testing data set. Here, as a sanity check, we show the
LOS object detection and tracking results on training data set, which is a much easier task than NLOS object prediction on
testing data set. In Fig. 23 and Fig. 24, we show more joint detection and tracking results on NLOS objects in testing data set.
Specifically in Fig. 24, the four scenes are the same as in the main paper. Here we show more frames where the NLOS objects
are jointly detected and tracked by our model. In Fig. 23, we show more results where a hidden object became visible by
lidar but not radar. Due to noisy data in some of these frames, there are no labeled radar points. However, our model is able
to correctly detect by reasoning about sequences of frames instead of a single one, validating the proposed joint detection and
tracking approach. In Fig. 25, we show nine tracking trajectories for both training and testing data sets. We can see a variety
of wall types, trajectories and viewpoints of the observing vehicles.

References
[1] W. Chen, S. Daneau, F. Mannan, and F. Heide. Steady-state non-line-of-sight imaging. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 6790–6799, 2019. 7
[2] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 12697–12705, 2019. 21
[3] J. Li and P. Stoica. MIMO Radar Signal Processing. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2008. 10
[4] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision, pages 2980–2988, 2017. 21, 22
[5] D. B. Lindell, G. Wetzstein, and V. Koltun. Acoustic non-line-of-sight imaging. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6780–6789, 2019. 7
[6] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single

convolutional net. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 3569–3577, 2018. 22
[7] D. Lynch. Introduction to RF stealth. The SciTech radar and defense series. SciTech, 2004. 7
[8] S. M. Patole, M. Torlak, D. Wang, and M. Ali. Automotive Radars: A review of signal processing techniques. IEEE Signal Processing

Magazine, 34(2):22–35, 2017. 5
[9] M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin. Principles of modern radar. Citeseer, 2010. 7

[10] H. Rohling. Ordered Statistic CFAR Technique an Overview. In 2011 12th International Radar Symposium (IRS), pages 631–638,
Leipzig, Germany, 2011. 12

[11] K. Sarabandi, E. S. Li, and A. Nashashibi. Modeling and measurements of scattering from road surfaces at millimeter-wave frequen-
cies. IEEE Transactions on Antennas and Propagation, 45(11):1679–1688, 1997. 7

[12] N. Scheiner, N. Appenrodt, J. Dickmann, and B. Sick. A Multi-Stage Clustering Framework for Automotive Radar Data. In IEEE
22nd Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019. IEEE. 15

[13] N. Scheiner, N. Appenrodt, J. Dickmann, and B. Sick. Automated Ground Truth Estimation of Vulnerable Road Users in Automotive
Radar Data Using GNSS. In IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pages 5–9,
Detroit, MI, USA, 2019. IEEE. 2

[14] N. Scheiner, S. Haag, N. Appenrodt, B. Duraisamy, J. Dickmann, M. Fritzsche, and B. Sick. Automated Ground Truth Estimation
For Automotive Radar Tracking Applications With Portable GNSS And IMU Devices. In 20th International Radar Symposium (IRS),
pages 1–10, Ulm, Germany, 2019. 2

[15] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. Lsd: a line segment detector. Image Processing On Line, 2:35–55, 2012.
24


