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Abstract

Depth-dependent defocus results in a limited depth-of-
field in consumer-level cameras. Computational imaging
provides alternative solutions to resolve all-in-focus images
with the assistance of designed optics and algorithms. In
this work, we extend the concept of focal sweep from re-
fractive optics to diffractive optics, where we fuse multi-
ple focal powers onto one single element. In contrast to
state-of-the-art sweep models, ours can generate better-
conditioned point spread function (PSF) distributions along
the expected depth range with drastically shortened (40%)
sweep distance. Further by encoding axially asymmetric
PSFs subject to color channels, and then sharing sharp in-
formation across channels, we preserve details as well as
color fidelity. We prototype two diffractive imaging systems
that work in the monochromatic and RGB color domain.
Experimental results indicate that the depth-of-field can be
significantly extended with fewer artifacts remaining after
the deconvolution.

1. Introduction

Extending depth-of-field (DOF) is an exciting research
direction in computational imaging [32, 3], particularly for
embedded cameras where a large numerical aperture (aka.
a small f -number) is necessary to ensure high light through-
put. Recent advances seek to design optics in combina-
tion with post-processing algorithms to either preserve more
information or enable extra functionality by reducing the
complexity of lenses.

Work on this problem ranges from capturing entire light
field [23, 5] to engineering point spread function (PSF)
shapes [6, 36, 19]. Using the prior knowledge on the map-
ping relation between kernel shapes and scene depths, one
can recover all-in-focus images. Despite engineering PSF
shapes on the pupil plane of a lens, another advance is to
apply sweep type solutions such as spatial focal sweep or
focal stack cameras [21, 11, 17].

The focal sweeps facilitate nearly depth invariant blur

kernel by capturing an integrated PSF over a time duration,
and then apply a deconvolution step to remove the residual
blur effect [34, 17]. Sweeping reduces calibration require-
ments of depth-variant PSFs in the capture. This strategy
has been applied in not only imaging domain but projection
display domain [12]. Despite much research, auxiliary me-
chanics is usually required to sweep either the optics or the
sensor for a physical distance.

One common fact that has not been addressed by state-
of-the-art sweep type cameras is that these systems rely
on sweeping complex refractive optics. Planar optics, like
diffractive optical elements (DOEs) or metasurface lenses,
have recently been proven effective to shrink the camera
lenses in both weight and thickness [24, 7]. Although this
advantage is prominent for sweep configurations, a regular
Fresnel lens still requires a considerably large sweep dis-
tance as its refractive counterpart.

Using DOEs as imaging lenses provides flexibility to
create multiple foci with one single element [25]. De-
spite much research in optics on multi-focal lenses for
ophthalmic and clinical applications [33, 15, 13], existing
consumer-level cameras barely use this design. Theoreti-
cally by enabling multi-focal powers subject to depths, it is
viable to shorten sweep distance as well as to achieve better
conditioned integrating imaging (see Sec. 3.1).

In this work, we make the following contributions:

• We introduce a multi-focal sweep imaging system for
extending depth-of-field from one aggregated image
that incorporates optical design and post-capture im-
age reconstruction.

• We propose a diffractive lens design that is fused with
multiple focal powers subject to two aspects: expected
depth-of-field, and three color channel fidelity. The
better-conditioned kernel after sweeping integration
leads to an efficient deconvolution to resolve all-in-
focus images. Moreover, the color fidelity is preserved
via enforcing cross-channel information sharing.

• We present two prototype lenses to validate the con-
cept, with sweeping ultra-thin tri-focal and novem-
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focal diffractive lenses. We test our deconvolution
on different scenarios with large depth variance. The
results exhibit visually pleasing quality, especially in
terms of resolving all-in-focus images while preserv-
ing color fidelity and suppressing edging artifacts.

2. Related Work
Computational DOF extension. Capturing the entire
light field can enable extending DOF or refocusing. Al-
though lenslet-based light field cameras are available com-
mercially [23, 5], the significant compromise of spatial res-
olution is problematic. Reviewing sweep-type solutions,
focal sweep and focal stack strategies differ in that a fo-
cal sweep camera captures a single image while its focus is
quickly swept over a depth range, and a focal stack camera
captures a series of images at different focal settings subject
to depths [37, 18]. The latter requires more complex captur-
ing and processing procedure, so as to facilitate refocusing
experience. In this work, we aim to extend DOF to resolve
all-in-focus images.

An alternative approach is to leverage spectral focal dis-
persion along depth to replace the physical sweep mo-
tion [4]. Although the motion mechanics is removed, the
resolved image quality relies significantly on the reflectance
of the scene and the illumination spectra. That said, this ap-
proximation of depth invariant PSF behavior across color
channels may result in artifacts where partial spectral infor-
mation is absent in the scene. Furthermore, the DOF that
can be extended is limited using chromatic aberration of
regular refractive optics.

Image deconvolution. Recent advances in image decon-
volution seek to include extra prior knowledge, like using
a total variation (TV) prior [1], to restore high-frequency
information. Cho et al. [2] proposed to match the gradient
distribution for image restoration. Alternative non-convex
regularization terms are intensively investigated [19, 16],
empirically giving improved results at reasonable local op-
timum. This process can also be implemented in a blind
manner [30]. Despite adding generic priors in the optimiza-
tion, learning-based methods like convolutional neural net-
work [26] have been reported.

Encoded diffractive imaging. Through PSF engineer-
ing, aberrations can be designed for easy computational
removal. Early work of wave-front coding has proven to
extend depth-of-field using a cubic phase design [6]. This
work requires an extra focusing lens to provide focal power.
The flexibility of DOE in modulating light has been hight-
lighted recently as lensless computational sensors [29, 22]
and as encoded lenses [24, 9]. The former designs attach
DOEs in front of bare sensors to miniaturize form factor.
The latter designs exhibit ultra-thin appearance in optics

volume and are successfully encoded in either spatial or
spectral domain. However, the strong chromatic aberrations
of DOEs directly limits their application in color imaging.
Although Peng et al. [25] have reported a diffractive achro-
mat that preserves color fidelity, it is still challenging to at
the same time obtain high-resolution focusing over a large
depth range. The bottleneck lies in the limited design free-
dom of the products that are viable with current fabrica-
tions. We yield the design bandwidth to resolve an image
with reasonable spatial resolution within a large depth range
or a large field-of-view (FOV). Then, we resolve color fi-
delity relying on computational imaging techniques.

Chromatic aberration correction. To remove color
fringes on sharp edges resulted from different PSFs in chan-
nels, many low-level techniques have been applied in com-
plex optical systems [14, 27]. Later on, a convex cross-
channel prior is developed and efficiently solved [10]. The
symmetry of the convolution kernel [28] and the geomet-
ric and visual priors [35] are investigated. Very recently,
Sun et al. [31] investigated a blind deconvolution scheme
that included cross-channel sharing in the fitting model.
State-of-the-art models yield reasonably good results with
chromatic aberration corrected. In this work, we revisit the
cross-channel prior concept, while we don’t assume a spe-
cific reference channel as in above work. In our design, all
three channels contribute to the final deblurred image.

3. Optical Design
3.1. Multi-focal diffractive lens

We start by investigating the ability of a multi-focal lens
on shortening the sweep distance of focal sweep imaging.
Using geometry optics, the relationship among sweep dis-
tance s, foci number N , focal length difference Mf and fo-

Figure 1: Comparison of focused distances subject to ob-
ject distance and focal length under the assumption of thin
lens model (the math derivation is given). The three color
curves visualize the relations of using lenses with the focal
length of 49.5mm, 50.0mm, 50.5mm, respectively. s1 and
s2 represent the sweep distances needed for a tri-focal lens
and a one-focal lens, respectively.



Figure 2: Comparison of synthetic PSF behavior of sweeping a regular Fresnel lens (top) and our tri-focal lens (center and
bottom) subject to target depths. Notice that this design aims for monochromatic imaging that is integrated over a spectrum
of 10nm FWHM. The axes of each subfigure represent the size with a pixel pitch of 5µm. The normalized cross-sections
(right-most) indicate that our multi-focal sweep designs exhibit less variance (quantized) regarding PSF distributions. We
sacrifice the peak intensity at the central depth to minimize the variance of PSF distributions along full depth range.

cused depth range (on image end) l can be cast as follows:
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Assume we consider a lens with a focal length of 50mm to
cover the focused depth range (on object end) from 1.5m to
9m (l = 1.4mm), and the sweep distance is 0.5mm, then, the
focal length difference Mf should be beyond 0.96mm and
the foci number N should be at least 3. Subsequently, we
can choose Mf = 1mm and N = 3. This means the above
requirements can be realized by using a tri-focal lens with
the focal length of 49.5mm, 50mm, 50.5mm, respectively.

As shown in Fig. 1, it is clear that for a tri-focal lens,
due to the approximately periodic distribution of focal
planes along an expected depth range (the green, blue, and
red curves), we only need to sweep image planes from
50.75mm to 51.25mm (s = 0.5mm) to cover the desirable
focused depth range. However, for a lens with single fo-
cal length, we need to sweep the image plane from 50.3mm
to 51.7mm (s = l = 1.4mm) to cover the same depth range
from 1.5m to 9m (the green center curve). This matches the
derivation of Eq. 1, indicating that the sweep distance can
be drastically shortened by introducing multi-focal designs.

We note that the sweep distance derived above is the
minimum sweep distance. In practice, we choose to use
a relatively larger sweep distance, e.g. 0.8mm in the afore-
mentioned scenario. This is reasonable considering the dif-
ferent defocus effect of each object plane within the range
of the minimum sweep distance. The final kernel that is in-
tegrated over a sequence of more uniform depth PSFs leads
to a better-conditioned deconvolution.

We generate the multi-focal lens by fusing multiple Fres-
nel lenses onto one single element. As mentioned above,

we design two lenses. First, we divide the aperture into
three rings of equal area. Thus, the monochromatic de-
sign is a radial mixture of subregions screened from Fresnel
lenses at the wavelength of 550nm for three different focal
lengths, which we call tri-focal lens. Similarly, the RGB
color design is an axially asymmetric mixture of three afore-
mentioned monochromatic designs subject to three spectra,
namely 640nm, 550nm, 460nm, which we call novem-focal
lens. The graph fusion schemes and the microscope images
of our prototype lenses are shown top of Fig. 3.

3.2. PSF behaviors

Figure 2 visualizes the synthetic PSF behaviors of a reg-
ular Fresnel lens and our tri-focal lens, swept along a dis-
tance of 0.8mm (top and center row) and 0.5mm (bottom
row). We see that although none of its PSFs is highly fo-
cused, our tri-focal lens exhibits less variance in terms of
the size of peripheral energy distribution over the full depth
range. This more depth-invariant blur makes it possible to
deconvolve the full image using only one calibrated PSF.
We also note that PSFs become more depth-invariant when
increasing the sweep distance slightly (center Fig. 2). This
can be justified by the provided quantitative values as well.
We will further explain our choice in the experiments.

Figure 3 visualizes the real PSF behaviors of our two
multi-focal lenses swept over a distance of 0.5mm. Con-
cerning our novem-focal lens (shown right Fig. 3), despite
the relatively small variance regarding the size of peripheral
energy distribution in different channels, the PSFs exhibit
axially asymmetric shape with high-frequency components.
As the high-frequency components vary in spatial distribu-
tion from channel to channel, it is possible to recover that
with shared information from different channels.



Figure 3: Diagrams of graph fusion schemes (top) and
cropped microscope images of fabricated lenses as well as
the experimental PSFs behavior of sweeping a tri-focal lens
(bottom-left) and a novem-focal lens lens (bottom-right).
This experiment aims for RGB color imaging that is inte-
grated on a RGB Bayer sensor.

4. Image reconstruction

4.1. Sweeping image formation

The defocus effect can be formulated as a latent im-
age convolved with a blur kernel. Then, we can write the
recorded image in channel c in vector-matrix format as:

bc = Kcic + n, (2)

where for a channel c, b, K, i, n are the captured image,
convolution matrix, sharp latent image and additive noise
in the capture, respectively. Regarding a sweep imaging
system with a diffractive lens, Kc can be derived from the
PSF Pc integrated over the depth range ∆ and spectrum Λ
as follows:

Pc(x, y) =

∫
Λ

∫
∆

Qc(λ) · (P (x, y, z;λ)) dλdz, (3)

where P (x, y, z;λ) is the spatial spectral variant PSF de-
scribing the aberrations of lens, which is a function of both
spatial position (x, y, z) and spectral component λ. Qc rep-
resents the sensor response, which can be reasonably as-
sumed as the constant when used under narrowband sce-
nario. As aforementioned, after sweeping integration the
PSF Pc is approximately depth invariant.

4.2. Optimization method

To resolve all-in-focus images, we formulate the inverse
problem of Eq. 2 as an optimization containing a least-
squares data fitting term and a collection of priors that reg-
ularize the reconstruction.

Deconvolution on individual channels. Regarding the
deconvolution of an individual channel, which is also the
application scenario of monochromatic imaging, the prior

term Γ(ic) is a total variation prior (i.e. l1-norm on gra-
dients that are derived from multiplying a matrix D). The
optimization becomes as follows:

idc = argminic

µc

2
‖bc −Kcic‖22 + ‖Dic‖1. (4)

We can directly use the Split Bregman method [8] to effi-
ciently solve Eq. 4. A trick is to assign a slightly larger
weight of µc so as to yield the deconvolved result idc exhibit-
ing sharp edges and features. The intermediate resolved im-
ages serve as references for cross-channel processing.

Cross-channel regularization. The cross-channel regu-
larization follows closely the recent work [9]. This is real-
ized by enforcing the gradient information to be consistent
among different color channels. With respect to the color
multi-focal sweep scenario, ours differs from state-of-the-
art methods in that there is no specific sharp channel set as
a reference. In our case, the images in three channels shall
all serve as references, since the color PSF exhibits different
behaviors. That said, although none of the three channels is
sufficiently sharp before processing, each channel shall pre-
serve the details of some sense to the recovery of images in
others. The optimization then becomes as follows:

ic =argminic

α

2
‖bc −Kic‖22 + β‖Dic‖1

+
∑

m 6=lγ‖Dic −Didc ‖1,
(5)

where α, β, γ are tunable weights for each term.
Specially, Eq. 5 can be solved by introducing slack vari-

ables for the l1 term and then using a similar solver scheme
as in [25]. Although the deblurred images of each indi-
vidual channel (Eq. 4) may suffer from sensor noise, most
edges and features can be robustly recovered from the cross-
channel information sharing. These roughly deblurred im-
ages idc are used as reference channel images in the cross-
channel terms (Eq. 5) to iteratively recover the three channel
images. We don’t detail the algorithm here.

4.3. Efficiency and robustness analysis

We note that the cross-channel regularizer makes the op-
timization problem more complex and non-linear and the
resolved results could be highly dependent on the quality of
the reference channel. However, we manage to gain reason-
able good results with a reasonable amount of tuning effort.

Using the color PSFs derived from two real prototype
lenses, we have implemented simulations on a number of
test images (BSDS500 dataset [20]). Extra 0.5% Gaussian
noise is added. The comparison results are illustrated in
Tab. 1. Additional visualization results are presented in
Sec. 5.2. With respect to the tri-focal lens, we enforce cross-
channel sharing only from the green channel image to the



other relatively blurred red and blue channel images. With
respect to the novem-focal lens, we enforce cross-channel
sharing between all three channel images. For the latter, the
averaged run time for one image with the size of 1,384 by
1,036 pixels is around 7 seconds on Matlab IDE run on a
laptop PC with 2.4GHz CPU and 16GB ram.

We have the two observations. First, enforcing cross-
channel information sharing contributes to resolving higher
quality images in both scenarios. Further, enabling graph
fusion subject to colors in addition explores cross-channel
information sharing to preserve higher color fidelity.

Table 1: Comparisons of synthetic image reconstruction
with PSNR averaged over 100 dataset images. 1 indicates
the tri-focal lens and 2 indicates the novem-focal lens.

w/o. cross. 1 w/. cross. 1 w/o. cross. 2 w/. cross. 2
20.392 23.299 23.523 24.625

5. Implementation and discussion
In this section, before presenting selected experimental

results that validate the proposed approach, we start by in-
troducing the parameters of our prototype lenses.

5.1. Prototype parameters

We have designed two types of multi-focal diffractive
lenses, one for monochromatic imaging while the other for
RGB color imaging. The aperture diameter is 8mm for both
designs. The monochromatic one is designed at the central
wavelength of 550nm and fused with 3 Fresnel lens patterns
subject to focal lengths of 49.5mm, 50.0mm, 50.5mm. The
color one is designed with fusing afore-designed monochro-
matic patterns subject to wavelengths of 640nm, 550nm,
460nm. Both lenses are attached in front of a PointGrey
sensor (GS3-14S5C) that has the pixel pitch of 6.45µm. The
exposure time is 500ms for lab setting scenes and 650ms for
office setting scenes, during when 0.5mm axial distance is
swept. The experimental setup is illustrated in Fig. 4.

We fabricated our designed lenses by repeatedly apply-
ing photolithography and RIE techniques [25]. The sub-
strate in our implementation is a 0.5mm Fused Silica wafer
with an index of 1.459. We choose 16-phase-level micro-
structures to approximate the continuous surface profile.
We use 4π phase modulation corresponding to 2.39µm
etching depth on the wafer. The higher order diffraction
benefits to yielding a short focal length (aka. small f -
number) design with the practical feature size of state-of-
the-art fabrication techniques.

5.2. Results

Simulation results of two standard images are presented
in Fig. 5. From the zoomed-in insets, we observe that the
axially asymmetric fusion design preserves higher color fi-

Figure 4: Photograph of our experimental setup. Left: a
captured scene with a large depth range; Right: the pro-
totype lenses are mounted on a holder while the sensor is
mounted on a controlled translation stage.

delity than a regular symmetric multi-focal design, while its
ability to distinguish fine details is slightly traded off.

The real world results are presented in Fig. 6 and in
Fig. 7. The depth range is set from 1.5m to 3.5m for the
lab setting scenes (shown left of Fig. 4) and set from 2m
to 8m for the office setting scenes. In particular, since the
first prototype aims for monochromatic imaging, the recon-
structed results of green channel exhibit decent quality.

We first set the green channel as the reference and use
a cross-channel prior to deconvolve the images. As shown
bottom row of Fig. 6, although exhibiting reasonable spa-
tial resolution, its color fidelity is quite low. This is because
naive Fresnel lenses suffer from severe chromatic aberra-
tion. A regular cross-channel prior is not sufficiently robust
to preserve both spatial frequency and color fidelity.

In contrast, the second prototype additionally favors axi-
ally asymmetric PSFs subject to three color channels. That
said, we have a relatively high-intensity peak with high-
frequency long tails of PSF in each channel such that in
the deconvolution we can preserve color fidelity (shown in
Fig. 7). However, limited by the data bandwidth of the
DOE, we have to trade off the spatial resolution of some
sense. The overall image quality is still visually accept-
able. Again, this work aims for extending DOF rather than
naively pursuing spatial resolution. From this perspective,
despite the slight image contrast loss due to the fabrication
and prototype issues, our multi-focal lenses outperform off-
the-shelf products, as shown in Fig. 8. To achieve a compet-
itive DOF performance, one need to drastically shrink down
the aperture to at least a f -number 12, which requires much
longer exposure in practice.

5.3. Discussions

On optics end, current fusion scheme of multiple foci is
derived in a heuristic manner and shows only two effective
designs. The optimal spatial distribution of PSFs may vary.
Designing fusion schemes in an intelligent way remains an



Figure 5: Simulation results: (a) ground truth inputs and kernels; (b) degraded images blurred by corresponding kernels; (c)
reconstruction results using TV-based deconvolution on individual channels; (d) reconstruction results using deconvolution
with TV and cross-channel regularization. The two color PSFs used to degrade the images are calibrated from the two
prototype lenses under white point light source illumination. In addition to the background noise in the calibrated PSFs (see
insets in Fig. 3), 0.5% white noise is added.

Figure 6: Cropped regions of real world results. Top: degraded inputs; Bottom: reconstruction results using deconvolution
with TV and cross-channel regularizations. For experimental convenience, we capture a depth range from 1.5m to 3.5m for
the left two scenes and from 2m to 8m for the right scene with a sweep distance of 0.5mm. We use the single calibrated PSF
shown in Fig. 3 to deconvolve all images.

open but interesting direction. We anticipate learning strate-
gies, like look-up table or dictionary search, can be used to

guide the design.
Remaining artifacts like low image contrast and residual



Figure 7: Cropped regions of real world results. Top: degraded inputs; Bottom: reconstruction results using deconvolution
with TV and cross-channel regularizations. We use the same experimental setting as in Fig. 6.

Figure 8: DOF comparison between our tri-focal lens (left)
and a standard EF50 (Canon) refractive lens (right), both
with a f -number 6.25. The scene depth range is 1.5m to
3.5m, highlighted by different color rectangles. We here
extract the green channel for a fair comparison.

blur are due to several engineering factors. Careful read-
ers may observe from the results that a slight shift (2-pixel
level) occurs when sweeping the lens. This is mainly be-
cause our sweeping axis is not strictly perpendicular to the
sensor plane. The customized lens holder and cover may in-
troduce ambient light that amplifies the noise. We also note
that metamerism issues exists since the scope is not aim-
ing for full spectrum, thus slight color artifacts may remain
when used under white light illumination.

In addition, current DOEs with 16-level structure still
suffer from a non-trivial diffraction efficiency loss, espe-
cially for high diffraction order designs, that is observed as
low image contrast and additional blur. Due to the inher-
ent limitation of feature size, it is challenging to create a
diffractive lens with a high numerical aperture (aka. small
f -number). This fabrication constraint can be overcome by
more advanced methods like nano-imprinting or grayscale
photolithography.

On reconstruction end, the cross-channel regularization
can be further exploited. We anticipate there exists a better

strategy to define reference channels rather than enforcing
current two-step deconvolution scheme. Additional denois-
ing solver can be added to obtain better visualization.

On application end, the narrowband design is promis-
ing in surveillance scenarios where a large FOV and a large
DOF are strongly acknowledged. In addition, depth sensors
with active illumination are excellent platforms where our
multi-focal lenses can be incorporated. Active illumination
ensures that fusing a few wavelengths is reasonable so as to
yield great design freedom to extend DOF.

6. Conclusion
We have proposed a computational imaging approach

that jointly considers sweeping diffractive design and image
reconstruction algorithms, and demonstrated the practical-
ity of extending depth-of-field with compact lenses. Ben-
efiting from the design flexibility of diffractive optics, the
proposed design significantly shortens the required sweep
distance meanwhile exhibits a better conditioned depth-
invariant kernel behavior.

Moreover, color fidelity is preserved by fusing spectral
variant PSF behaviors in the diffractive lens design and en-
forcing cross-channel regularization in the deconvolution.
We have validated the effectiveness and robustness of our
method with a variety of captured scenes. Although cur-
rent experimental results suffer from the problems of slight
blurry and low contrast that can be resolved via a reason-
able amount of engineering effort, our approach shall be an
effective solution to extend depth-of-field especially in sit-
uations where thin and lightweight optics is expected.
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